CHEM1101 Problem Sheet 3 (Week 3)

1. Calculate the velocity and the wavelength of an electron with a kinetic energy of 100. eV . (Note that kinetic energy $=p^{2} /(2 m)$ with $p=$ momentum and $m=$ mass.)
2. Calculate the largest energy gap between any two adjacent energy levels in He^{+}using the expression below for the energy level of an electron with quantum number n in a hydrogen-like atom.

$$
E_{n}=\frac{-E_{R} Z^{2}}{n^{2}} \text { where } E_{R}=2.18 \times 10^{-18} \mathrm{~J}
$$

3. Sketch the radial part of the 2-D waveform shown below on the axes provided, and identify the nodes. ' 0 ' denotes the centre of the drumhead and ' r ' the perimeter.

4. Complete the table below by filling in the quantum numbers that describe the following atomic orbitals. The $4 d$ orbital has been completed as an example.

Orbital	n	l	m_{l}
$4 d$	4	2	$-2,-1,0,1,2$
$1 s$			
$3 p$			
$5 d$			

5. Sketch the lobe representations of a $2 p$ and a $3 p$ orbital.
6. Write out the electron configurations for the following elements in the two formats shown for aluminium.
e.g. Al
$[\mathrm{Ne}] 3 s^{2} 3 p^{1}$
$[\mathrm{Ne}] \uparrow \downarrow \uparrow$
(a) O
(b) Ga
(c) Fr
